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Abstract

Direct numerical simulation and large eddy simulations are powerful tools for study-
ing turbulent flows. Unfortunately, they are computationally demanding in terms of
run times, storage, and accuracy of the numerical method used. In particular, high
order methods promise high accuracy on a given grid~ but they often fail to deliver
the expected accuracy due to dispersive truncation errors that appear as unphysical
oscillations in the numerical solutions. This report describes a nonlinear flux limiter
that has been applied to the second-order tensor viscosity method and markedly re-
duces the dispersive truncation errors. A Rayleigh-Taylor instability is simulated to
show how well the flux limiter works.



1 Introduction

Direct numerical simulation (DNS) is a powerful tool for studying turbulent flows. 

definition, a DNS resolves all flow features down to the microscale, so it is computationally

challenging. It requires the largest and fastest computers, and even then such sinmlations

are typically run with marginal resolution. A more commonly used tool is the large eddy

simulation (LES), in which the large-scale flow features are resolved, and the effects of the

subgrid-scale flow features are included by an eddy viscosity or Other simple model. Both

approaches make severe demands on the numerical algorithm if accuracy is to be attained.

There is an intermediate approach that has sometimes been used. A simulation

is performed without a turbulence model, but without sufficient resolution to resolve the

microscale. This is sometimes called a DNS in the literature, but I will make a distinction

in this report and label this approach a basic simplified DNS (BSDNS). Apologists for this

approach argue that one can avoid the expense and bother of using a turbulence model by

relying on the numerical method used in the computational fluid dynamics (CFD) program

to introduce the two major effects of a real turbulence model in cases where the resolution

is inadequate to resolve all scales of motion. First, the grid imposes a high-wavenumber

cutoff on the turbulence energy spectrum. Second, numerical diffusion provides a source

of dissipation for the kinetic energy that cascades to the highest resolved wavenumbers.

Indeed, it is easy to show that the numerical diffusion of first-order donor cell (upwind)

differencing is the same order of magnitude as the Smagorinsky eddy viscosity, which has

led to the suggestion of using donor cell (first order upwind) differencing as a "poor man’s

LES model." Unfortunately, as we shall see, the use of the BSDNS approach can lead to

erroneous results. This is especially true in simulations based on the Euler equations, which

allow "turbulence" to cascade all the way down to the grid scale regardless of how much

resolution is used.

Regardless of which of the above approaches is used, the treatment of the convection

terms is especially important. It is desirable to use methods that are at least second order

in both space and time. It is important also that the me~hods be "monotonic," which

means that positive definite quantities (such as density and temperature) remain nonnegative



and that the method does not allow the unchecked growth of numerical oscillations due to

dispersive truncation errors. These requirements are to some extent mutually exclusive since

there is a tendency for high order methods to have significant dispersive errors.

In the end, what we really want are accurate solutions in the sense that the truncation

errors are sufficiently small in magnitude. The fundamental requirement is that our numerical

method be both consistent and stable so it can be convergent [1]. If the method we choose

provides sufficient accuracy, the formal order of the method used is more a matter of politics

and aesthetics than a technical issue. However, we know from experience that first order

methods are usually inadequate. Consider the following example. The simplest monotonic

method is donor cell. 1 However, a careful accounting of the scaling of the eddy viscosity

in the LUVD11 turbulence model [2, 3] and the Smagorinsky model [4, 5] shows it scales

as ~z4/3 if the grid size 5z is in the inertial subrange of turbulence with a Kolmogorov

spectrum. Donor cell has a strong diffusional truncation error with a diffusivity that scales

as ~z, which will get small more slowly than the LES terms as the grid is refined. Since the

donor cell diffusivity is comparable to the LES viscosity even on fairly coarse grids, higher

order methods with less numerical diffusion should be used.

There are many higher order methods with small numerical diffusion, but typically

they have the unfortunate property that dispersive truncation errors cause significant numer-

ical oscillations in the neighborhood of steep gradients. The oscillations tend to be worse the

higher the order. What this means in practice is that higher order methods do not always

guarantee high accuracy in the solution. In particular, they do not "increase resolution," as

sometimes claimed in otherwise scholarly articles. There must be at least two zones across

a flow feature regardless of the order of the method. Second, there is far more to the issue

of accuracy than just the powers x of the grid size ~z and of the time step ~t that appear

as the truncation error terms of the modified equations. 2 In poorly resolved flows, the high

order derivatives can be huge, resulting in significant numerical errors in spite of the high

formal order of accuracy.

1Donor cell differencing is monotonic only if the time step is sufficiently small. The time step limit for
monotonicity is less than that for formal linear stability, as we shall see in the next section.

2Modified equations are the differential equations obtained by Taylor series expansion of the difference
equations. For a consistent method, the zeroth order terms are .just the original differential equations.



A variety of approaches for alleviating this accuracy problem have been suggested, and

it is beyond the scope of this report to discuss them. What we need is a simple but effective

flux limiter that can be easily retrofitted to existing CFD codes. In the next section, we

describe such a method, which we call the convection-limiting accuracy maintenance (CLAM)

method. In the third section, we apply the CLAM method to a classical Rayleigh-Taylor

instability. Conclusions are presented in the fourth section.

2 The CLAM Method

There are many ways to reduce dispersively driven numerical oscillations, some of them

quite sophisticated, complex, and difficult to understand. What I want is something simple

and economical to use, easy to understand and straightforward to implement. An attractive

approach that meets these requirements is to use convective fluxes computed as a linear

combination of high order fluxes and donor cell fluxes determined by a local prescription of

how much of each to use such that nemerical oscillations are controlled. Among the earliest

attempts was an empirically-based method described by Clark and Hill [6, 7] and modified

by Smolarkiewicz [8]. Later came the FRAM method of Chapman [9]. He used a test on a

Lagrangian estimate of the local density field to switch between a high order method and

donor cell differencing in such a way that extrema were not unphysically enhanced. Later

this method was modified to produce less overall numerical diffusion in arbitrary Lagrangian-

Eulerian (ALE) codes [10]. However, while that method works quite well, it is not as readily

implemented in pure Eulerian codes. Since there is a current need for reducing dispersive

errors in the COYOTE Eulerian code [11], I developed an improved version of the Clark-Hill

approach, the CLAM method.

The CLAM method is based on a hybrid convective flux obtained by a linear com-

bination of a flux from a high order method with the flux from donor cell differencing. We

illustrate the method by considering the tensor viscosity (TV) method [12], which is formally

second order in both space and time. It has the considerable advantages of being a single-step

explicit method and accurate in cases where dispersive truncation errors are small. How-

ever, it has a tendency to introduce spurious oscillations in regions of steep gradients, which

compromises the accuracy despite being second order. The truncation errors in high-order
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methods are not necessarily small. Going to even higher orders does not necessarily help.

Experience has shown, for example, that the third order QUICK method [13] has an even

more pronounced tendency to produce oscillations.

Let us begin describing the CLAM filter by considering the advection equation for a

scalar variable ¢:
0¢ O¢u
o~ + 0x - s~. (1)

Let ¢i be the value of ¢ at cell center i, and let the convective fluxes Fi-1/2 and velocities

ui-i/2 be defined on cell edges i - 1/2. All quantities are evaluated at time level n unless

denoted by the superscript n + 1. Then we use the explicit finite difference approximation

5t
(Fi+I/2 _ Fi_1/2 ) 4- 5t S&i. (~)

C DC TVFi-1/2 = (~)~-1/2 = (1 - ~ - 9)F2_1/2 + ~F~_1/2 + 9F~_1/~

: 0.57Ai_1/2(¢i_1 +~i)- 0.5 (O~[?~i_l/2[(~Xi_l/2 /3 U:_a/2(~t)~/~)i-1~

\ 6x~_~/~ /"
(3)

Here we have made use of the following definitions for the centered, donor cell, and TV

flUXeS:

F/6_’1/2 = 0.5(¢i 4- ¢i-1)ui-1/2 (4)

TVFi_~/~ = 0.5(¢~ + ¢~_~)~_~/~ ~t~_~/~ (¢~ ¢~_~)
2 (~Xi_l/2

~t~L~/~ (~- ~_~) (6)
= FiG-l~2 2 (~Xi_l/2

In these equations, 0 <_ a < 1 is the donor cell fraction, 0 <__ /3 <_ 1 is the tensor viscosity

fraction, and ~ = 1 - a - /3 is the centered differencing fraction (normally set to zero).

Normally, we run the code with a = 0 and 3 = 1 whenever possible since this combination

is second order accurate in space and time. However, it is prone to producing nonphysical

oscillations in solutions with steep gradients. The procedure then is to make a nonzero

but as small as possible while still suppressing the oscillations. The idea is to damp the



oscillations while introducing only the minimum amount of first order diffusion from the

donor cell component.

This hybrid flux expression has some desirable properties. First, all three component

fluxes are consistent, so the total flux expression is consistent. It also has acceptable stability

properties. If we use centered differencing (a = /5 = 0), the difference equations 2 and 

are unconditionally unstable even though it is formally second order in space. This is why

we almost always run with ~ = 0. However, it is convenient to write the fluxes in terms of

centered differencing plus a diffusion-like correction term, so we retain the option of using

centered differences for testing and instructional purposes. The other two flux expressions

are conditionally stable, and therefore convergent (at least for linear problems in which u is

a constant) [1]. In both cases, the formal stability limit is )l ==- lul ~t/~xi < 1. In practice,

we can seldom get close to this limit when u is not constant, and we must use X ~ 0.2.

There are also some interesting monotonicity considerations. By monotonic, we mean

a method that will not enhance extrema of the solution in a nonphysical way or introduce

spurious extrema. In other words, the numerical method will not produce "wiggles" due

to dispersive truncation errors. The TV method is well known to be nonmonotonic even

for constant u, which can introduce substantial errors even though the method is formally

second order in space and time. Donor cell is monotonic under certain conditions, and these

conditions are related to the fact that the linear stability limit cannot be approached for

most problems. For constant u, donor cell is stable and monotonic up to the linear stability

limit. However, it is easy to see that the situation is different for variable u. Consider the

case ui-1/2 = (-1)iu0, where u0 > 0 is a constant. Assume also that ¢ > 0 is a constant.

The correct solution for this problem is ¢ going to zero in those cells for which the velocity

on the two cell faces is outward. This insures the positive-definiteness of ¢. However, it is

easy to see that if X > 0.5, ¢ will become negative on the first cycle. While the scheme

remains stable, it produces an unphysieal, nonmonotonie result. The time step limit for

monotonieity becomes even more restrictive in two and three dimensions. It is easy to see

that if the outward flux times the cell face area has the same magnitude on every cell face,

the monotonicity limit is )l < 1/N/where N/ is the total number of cell faces.

The basic idea behind the CLAM method is to make ct and /5 a function of space



and time and to use simple tests to choose the locally required value of c~ needed to prevent

numerical oscillations. The goal is to introduce strong smoothing only where and when it is

actually needed, thereby minimizing the first order diffusive errors.

CLAM operates in a sequence of simple steps. We begin by specifying constant

values of a and fl that will be used for the baseline, lowest-diffusion method to be applied

everywhere that CLAM makes no changes. The present implementation is such that the

donor cell fraction is never less than a, and ~ is always the same constant value regardless of

what CLAM does. The next step is to compute a provisional value of the donor cell fraction

on each cell face using an empirically derived expression. Define a new variable ~ such that

¢ = ~ = p for the density and ¢ = p~ for all other variables. We choose

&~-1/2 = A + B + C + D +/~ + F , (7)

where A, B, C, D, E, and F are constants and

(8)

(9)

(lO)

We do this calculation for ~ = p, the specific internal energy I, and the temperature T, and

then take the largest of the three values of &i-l~2 as the provisional donor cell fraction on

that cell face.

There are several different options for ~:

= constant

= + I {-11
= mi (l {I)
= rain (l~jl)

i-l<_j<i

= ÷ I -11- 2 ol ÷ (1])

The examples in the next section use the second line. The use of a constant value, perhaps

approximately equal to the minimum value of ~ in the mesh, is probably better in problems



where ~ varies by a large factor, such as in the presence of a strong shock wave. The last

line is probably not a good choice for many problems since it has the potential of becoming

zero for an inauspicious choice of the constant ~0.

The motivation for this form is heuristic in nature. Smolarkiewicz [8] suggests B = 1.0

and zero for all the other constants. In our experience, this choice to provides too little

smoothing, at least for the Rayleigh-Taylor instabilities to be described in the next section.

The terms proportional to the first or second power of the slope are included because the

numerical oscillations occur where steep gradients are convected in the direction of the

gradient vector (that is, normal to an interface). However, oscillations can extend a number

of zones away from the steep part of the gradient. The second differences are included

because these are effective at picking up regions where the solution has an every-other-cell

oscillation, and we want to use the donor cell numerical diffusion to damp these. Dispersive

truncation errors are responsible for the oscillations with a period of 5 to 7 ceils, and these

are proportional to third derivatives. Hence, the inclusion of the Aa terms.

Once we have a provisional ct, we apply some cutoffs to it to make sure it is within

reasonable limits. Introduce two cutoff values, oz0 and oz, such that ~ < oz, <_ c~ _< oz0. Then if

&i-*/2 > a0, then eei-1/2 = 1-{. If&i-l/2 < ozl, then oei_l/2 = oz. Otherwise, ozi-1/2 = &i-,/2.

Note that if oz0 = al, the method switches back and forth between pure donor cell and pure

TV, similar to the FRAM method.

Once all this has been done, we can do one final thing. For zones in which any of the

positive-definite cell-centered quantities p, I, T, or any of the species densities are negative,

set the ozi-l/2 = 1.0 on all faces of that cell.

3 Rayleigh-Taylor Instability

In this report, we consider a classical Rayleigh-Taylor instability simulated with the COY-

OTE computer program [11]. COYOTE solves the compressible multicomponent Navier-

Stokes equations for both cold and reactive flows in two-dimensional Cartesian and axisym-

metric cylindrical geometries. It includes the LUVDll turbulence model [2, 3] and the

Smagorinsky model [4, 51 as options. The former subgrid-scale (SCS) turbulence model em-

ploys a single transport equation for the turbulence kinetic energy density. The latter model



employs an algebraic SGS eddy viscosity.

In the classical Rayleigh-Taylor instability, a layer of dense fluid is placed on top of

a layer of less dense fluid. Buoyancy forces cause an initial perturbation of the interface to

grow, allowing the denser fluid to fall downwards, displacing the lighter fluid upwards at an

increasing rate. Eventually, for immiscible fluids, the system ends up at rest with the denser

fluid on the bottom, and the lighter fluid on the top. For miscible fluids such as the gases

considered here, some mixing at the molecular level will occur. In this example, the flow

becomes turbulent, which enhances the molecular mixing. The final state will be a stratified

mixture whose composition profile will depend on the details of the flow.

The initial condition considered in this report has an interface perturbed by a single

Fourier mode as shown in Figure 1. Gas with a density of 1.57 x 10-2 g/cma lies above a

layer of gas with a density of 1.0 x 10.2 g/cma, which gives an Atwood number of At= 0.222.

The temperature is a uniform 287.7 K. Both fluids are perfect gases with "y = 5/3 and with

molecular weights of 15.7 and 10.0 for the heavy and light gases respectively. A gravitational

acceleration of 6.86 x 104 cm/s2 (70 G) points downward. Rigid free-slip boundaries are used

on all four walls. Transport coefficients are computed from the Lennard-Jones model [14]

using some arbitrary but typical values for the potential parameters: cr = 2.576 and 3.621 ~

and e/k = 10.20 and 97.53 for species 1 (heavy) and 2 (light), respectively.

The dimensionless parameters for this problem are estimated from the solution at

40 ms when the instability is well developed but has not been disrupted by the heavy fluid

hitting the bottom of the grid. Adiabatic sound speeds are 5.0 x 104 cm/s and 6.3 x 104 cm/s

in the heavy and light gases respectively. The highest speeds obtained at any time are on the

order of 400 cm/s, so the maximum Mach number is on the order of 0.01. There is no unique

Reynolds number associated with this problem as the velocity changes dramatically with

time. However, using a speed of 300 cm/s, the viscosity of the less viscous gas (0.01 em2/s),

and the 7.3 cm initial perturbation wavelength for the length scale, the Reynolds number is

2.2 x 104. If we choose the higher viscosity (0.024 cm2/s), the Reynolds number at 40 

is 104, which still indicates that a turbulent flow should develop from the initially laminar

instability. It would take a grid with one or two thousand zones on each side to perform a

DNS.



We implemented the CLAM algorithm in COYOTE and produced five planar two-

dimensional solutions with different convection algorithms and turbulence models. Three

solutions were BSDNSs without a turbulence model. These used donor cell differencing, TV,

and TV with the CLAM method (CLAM-TV). The other two solutions were done using the

LUVD11 one-equation turbulence transport model [2, 3]. One of those used TV, and the

other used CLAM-TV. In all cases, the 7.3 by 8.8 em mesh was covered by a uniform grid of

73 x 88 zones. The initial and boundary conditions were the same as in a previous study [15].

3.1 Donor Cell Solution

Figures 2 through 4 show the total density, temperature, and mass fraction contour plots for

the donor cell solution. The bubbles and spikes are almost symmetric about the midplanc of

the mesh. The initial interface, which was one zone wide, has been broadened significantly

by numerical diffusion, but it still exhibits the expected vortex pair shed by the tip of the

spike. Donor cell differencing has a numerical diffusivity of approximately

= 0.5 l il i
/

(12)

in the zi direction [8]. Since the iterative algorithm that makes COYOTE partially implicit

begins to become inefficient when acoustic waves can travel more than three to five zones in

one time step, this problem was run with the factor in parentheses greater than about 0.97.

Therefore, we shall neglect it, and we estimate the numerical viscosity on the finest grid to

be 4.4 cm2/s in the fastest part of the flow. This is over two orders of magnitude larger than

the physical viscosity, and it is sufficient to make the advection algorithm monotonic. The

effective Reynolds number of the simulation is on the order of 100, and we have a solution

that appears to be laminar.

The donor cell method is monotonic for the small time steps used in this calculation.

This can be seen in the density plot, where the max and rain values are 1.57 x 10-2 and

1.0 x 10-2 g/cm3, which are the initial values of the two fluid densities. There are no

overshoots or undershoots. The temperature fluctuations divided by the initial temperature

are on the order of 10-4, which is the square of the Mach number, just as expected. Although

the problem is isothermal to a high degree of approximation, the internal energies in the two
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fluids are 2.29 x 109 and 3.59 x 109 ergs/g, and the contours look the same as the density

contours. The difference is due to the differing molecular weights. The maximum velocity is

293 cm/s.

3.2 Tensor Viscosity Solution

Figures 5 through 7 were calculated by the TV method with neither CLAM method nor

turbulence model. The numerical diffusivity is tensorial in nature, a

J~,. = 05 at uu, (13)

which is a factor of X smaller than the donor cell viscosity. Much of this positive diffusivity

is used to cancel diffusive truncation errors with negative diffusivities. Comparison of the

mass fraction plots figures 4 and 7 shows the greatly reduced diffusion in the TV solution.

The width of the interface is much smaller and the production of vorticity is much larger in

the latter plot.

As discussed in a previous report, this solution has very poor accuracy [15]. Not only

is the shape of the interface all wrong, the dispersive errors are enormous. Compared to

the initial values, the maximum density has gone from 1.57 x 10.2 g/cma to 4.08 x 10-2,

and the minimum from 1.0 x 10-2 to 4.35 x 10-a. The isothermal 287.7 K fluid now has

temperatures from 110.9 to 1078.1 K. The mass fraction shows only a small amount of

under- and overshooting. Also, the peak speed is 543 cm/s, which is almost a factor of

two faster than in the donor cell solution. The accuracy can be improved by increased

resolution, but even zones 0.25 as wide still have unacceptable errors and show a lack of grid

independence. [15]. Notice also that the time step has dropped from 25 #s down to a little

over 4 ps due to the need to resolve the fine-scale numerical artifacts. It would be pointless

folly to perform a statistical analysis of the "turbulence" in this calculation.

3.3 CLAM Method Solution

Figures 8 through 10 were calculated with CLAM-TV and no turbulence model. The model

constants are A = 5.0, B = D = F = 1.0, C = E = 3.0, c~0 = 0.8, and c~1 -- 0.011. The

3The donor cell diffusivity may also be written in matrix form, with diagonal elements given by equation 12
and with zeroes off the diagonal [12].
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overall shape of the interface is much more like that of the donor cell solution, which is quite

reasonable. But now the interface thickness is noticably less, and the vortex at the edge of

the mushroon cap is much stronger. These are due to the reduced numerical diffusion of the

CLAM method compared with fl~ll donor cell differencing.

Although there are still residual numerical oscillations, the ampiRude is greatly re-

duced to just a few percent. The densities now lie between 9.86 x 10-a and 1.66 x 10-2

g/cma, and the temperatures lie between 272.3 and 295.9 K. The small oscillations in the

mass fraction have been reduced to an even more insignificant level. The maximum fluid

speed is 348 cm/s.

3.4 LES Model Solution

Figures 11 through 13 show the solution for the TV method plus the LUVD11 turbulence

model. LUVD11 is constructed so that for turbulence that has attained equilibrium between

production and decay, one obtains the same eddy viscosity as the Smagorinsky model. The

turbulence length scale is assumed to be 1.94 dz. However, the LUVDll model produces too

much smoothing in this calculation. The shape of the spike is odd for reasons that are not

completely understood. Perhaps it is the strong cross-stream diffusion along the sides of the

spike. In any case, we have seen that resolution improves this situation [15].

The interface thickness is as large as for donor cell differencing, and the vortex forma-

tion is even more suppressed by the cross-stream diffusion. The peak velocity is 296 cm/s.

Tempcraturc fluctuations are confined to the tips of the bubbles and spike. The fluctuation

has been reduced to 1 K in the bubble and +1.2, -4.5 in the spike, giving a range of 283.2

to 289.0 K over the whole mesh. The mass fraction is strictly monotonic.

3.5 CLAM-TV Solution with LES

Figures 14 through 16 show the plots for the solution performed with CLAM-TV and

LUVDll. The shape of the interface is more nearly normal than in the previous case shown

in figures 11 through 13. This is most likely due to the reduction in the turbulence kinetic

energy production caused by suppression of the artificial small-scale fluctuations by CLAM.

This is consistent with the observation that the interface is not as thick, and the vortices in
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the mushroom caps are stronger. Indeed, plots of the turbulence kinetic energy show similar

distributions, but this case has a peak value that is 10 percent smaller.

The peak velocity is 293 cm/s. The scalar fields are no longer quite monotonic, a

result of the slight reduction in the eddy viscosity. Density overshoots are +5.2 x 10-4

(a.3 percent) to -6.1 × 10-5 (0.4 percent). Temperatures range from 278.6 to 291.1, for

fluctuations of-9.1 to +3.4 K.

It is interesting that with the exception of unmodified TV, these calculations all

predict pretty much the same amplitude of the instability regardless of the fine details.

This insensitivity of the thickness of the mixed layer to details of numerical method and

turbulence model suggests that the growth rate of Raylcigh-Taylor instabilities may not be

a good diagnostic for testing turbulence models.

4 A Curious Result

Figure 17 shows the horizontally averaged mass fraction of the heavy species as a function of

height. Flux-limited runs with and without the turbulence model both produce a pronounced

slope reversal in the middle of the mixed zone. This feature can easily be understood by

looking at the mass fraction plots, which show heavy fluid accumulating at the spike tip

and light fluid piling up at the bubble tips. For a single-mode instability at this stage of

its development, this is a reasonable result. We point out, however, that this slope reversal

cannot be predicted by a one-dimensional model, such as the k - e model, which uses a

diffusion approximation for the mass fluxes. This is strictly a convective effect. Preliminary

singly and multimode simulation suggests that the reversal may not be present at late times,

or even never present if the flow is more "turbulent" and tess organized as in the case of a

multimode initial condition. This point is being studied further.

5 Conclusions

The primary objective of this study is to illustrate the effects of numerical methodology

and turbulence models on a generic Rayleigh-Taylor instability. This was accomplished with

the COYOTE CFD program using a variety of different numerical methods and turbulence
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models to produce five numerical solutions. On the basis of these simulations, wc have

arrived at the following conclusions:

¯ The TV method by itself produced unacceptable results due to the dispersive trunca-

tion errors, which are a side effect of the low numerical diffusion. We successfully introduced

a very simple, heuristic flux limRer, the CLAM method, that produced a much more realistic

simulation of a Rayliegh-Taylor instability. Even though the CLAM method as presented

here did not completely eliminate the dispersive oscillations, it markedly reduced them.

¯ The CLAM method is easy to implement in any code in which the convective

fluxes are computed as a mixture of a high order method and donor cell. This is especially

advantageous in existing codes where other types of flux limiters may require extensive code

modifications. Also, CLAM is computationally inexpensive, mathematically consistent and

stable, and can produce no more diffusion than donor cell differencing.

¯ The concept of the BSDNS (an unresolved DNS) was tested, and the poor perfor-

mance of the unmodified TV method strongly suggests that if a BSDNS is to be reliable,

the convective terms of the CFD algorithm must be monotonic, either by the construction

of the difference method or by the use of flux limiters.

¯ Another approach, which we have not tried, is to use the unmodified TV method,

but artificially increase the value of the molecular viscosity to the point that it provides a

reasonable amount of dissipation at the grid scale.

¯ The insensitivity of the thickness of the mixed layer to details of numerical method

and turbulence model suggests that the growth rate of Rayleigh-Taylor instabilities is not a

good diagnostic for testing turbulence models.
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Y 1 cycle= 0 t= 0.000000D+00 dt= 1.000000D-06
max = 1.000000D+00 min = 0.000000D+00 dq = 1.000000D-01

Figure 1: Mass fraction contours for species 1 at 0 ms. The heavy gas (species 1) is on the
top. The grid is 7.3 cm wide by 8.8 cm tall, and it is covered with 73 x 88 uniform zones.
The initial interface is y = 4.4 + 0.2 cos(2~rz/7.3). In all plots, the contour labels b through
j denote contour values of 0.1 through 0.9 in steps of 0.1. The legend at the top of the figure
gives the cycle number, the problem time , the current time step, the maximum function
value (max), the minimum function value (rain), and the contour spacing. All units are 
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Density cycle= 2133 t= 4.001435D-02 dt= 2.500000D-05
max = 1.570044D-02 min = 9.999801D-03 dq = 5.700644D-04

Figure 2: Total density contours at 40 ms using donor cell differencing.
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Temper cycle= 2133 t= 4.001435D-02 dt= 2.500000D-05
max = 2.877186D+02 min = 2.876815D+02 dq = 3.714991D-03

b ---b b

Figure 3: Temperature contours at 40 ms using donor cell differencing.
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Y 1 cycle= 2133 t= 4.001435D-02 dt= 2.500000D-05
max = 1.000000D+00 min = 2.358746D-41 dq = 1.000000D-01

Figure 4: Mass fraction contours for species 1 at 40 ms using donor cell differencing.
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Density cycle= 6985 t= 4.000385D-02 dt= 4.347733D-06
max = 4.075086D-02 min = 4.105870D-03 dq = 3.664499D-03

Figure 5: Total density contours at 40 ms using the tensor viscosity method.
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Temper cycle= 6985 t= 4.000385D-02 dt= 4.347733D-06
max = 1.078109D+03 min = 1.108626D+02 dq = 9.672468D+01

o

Figure 6: Temperature contours at 40 ms using the tensor viscosity method.
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Y 1 cycle= 6985 t= 4.000385D-02 dt= 4.347733D-06
max = 1.000111D+00 min = -5.448470D-06 dq = 1.000117D-01

Figure 7: Mass fraction contours for species 1 at 40 ms using the tensor viscosity method.
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Density cycle= 2370 t= 4.001409D-02 dt= 1.562439D-05
max = 1.658974D-02 min = 9.859479D-03 dq = 6.730259D-04

Figure 8: Total density contours at 40 ms using the tensor viscosity plus CLAM method.
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Temper cycle= 2370 t= 4.001409D-02 dt= 1.562439D-05
max = 2.958701D+02 min = 2.722983D+02 dq = 2.357177D+00

o
h

Figure 9: Temperature contours at 40 ms using the tensor viscosity plus CLAM method.
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Y 1 cycle= 2370 t= 4.001409D-02 dt= 1.562439D-05
max = 1.000004D+00 min = -4.316624D-06 dq = 1.000009D-01

Figure 10: Mass fraction contours for species 1 at 40 ms using the tensor viscosity plus
CLAM method.
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Temper cycle= 8035 t= 4.000170D-02 dt= 5.044332D-06
max = 2.889788D+02 min = 2.831951D+02 dq = 5.783704D-01

Figure 12: Temperature contours at 40 ms using tensor viscosity plus the LUVDll turbulence
model.
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Density cycle= 7175 t= 4.000258D-02 dt= 5.331587D-06
max = 1.621820D-02 min = 9.939485D-03 dq = 6.278713D-04

Figure 14: Total density contours at 40 ms using tensor viscosity plus the LUVDll model
plus CLAM.
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Temper cycle= 7175 t= 4.000258D-02 dt= 5.331587D-06
max = 2.911324D+02 min = 2.785546D+02 dq = 1.257785D+00

Figure 15: Temperature contours at 40 ms using tensor viscosity plus the LUVDll model
plus CLAM.
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Y 1 cycle= 7175 t= 4.000258D-02 dt= 5.331587D-06
max = 1.000014D+00 min = -2.155212D-05 dq = 1.000035D-01

Figure 16: Mass fraction contours for species 1 at 40 ms using tensor viscosity plus the
LUVDll model plus CLAM.
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Figure 17: Horizontally averaged mass fraction of species 1 at 40 ms using the CLAM
method, with and without the turbulence model.
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